
• Page 1 •

- Demonstration Of The Ill-Conditioned Nature Of Hilbert Matricies.

Demonstration Of The Ill-Conditioned
Nature Of Hilbert Matricies

An application of numerical analysis techniques

In this assignment I used LU decomposition to solve
the matrix equation H • X = B where H corresponds to
a Hilbert matrix of order n, and all elements of B are
unity, and compare these results with those given by
more accurate integer methods. I found that while the
error from the LU decomposition increase
exponentially with n, the routine still coped very well
with quite extremely ill-conditioned matrices over the
range of n used (2 to 10). However, for
characteristically ill-conditioned matrix systems, one
should generally endeavour to find analytical solutions
as opposed to utilising numerical methods when
accuracy is of primary importance.

Andrew N Jackson 17th February 1996

Introduction
As a computational experiment in the application of numerical methods, this assignment concerns the
demonstration of the ill-conditioned nature of Hilbert matricies. This aim is effected by solving a
matrix equation of the form:

H • X = B

for a range of order of Hilbert matrix (where all elements of B are unity). The resulting values
contained within X can then be compared with those computed from formulae (via more accurate
integer methods).

As a consequence of the above investigation, this assignment also serves as an introduction to the
numerical solution of matricies, in this case by LU decomposition.

• Page 1 •

- Demonstration Of The Ill-Conditioned Nature Of Hilbert Matricies.

Theory
For a particular order, n, the Hilbert matrix is defined such that:

aij = 1 (1)
 i + j - 1

For example, the 3rd order Hilber matrix is defined as:

As mentioned before, in this experiment LU decomposition was used to solve the matrix equation:

H • X = B (2)

ie LU decomposition calculates the inverse of the matrix H and uses this inverted form to solve for X
(where the elements of B are all unity,). The theory behind LU decomposition is as follows:

It is proposed that an arbitrary matrix A is transformed into a product of two matricies:

L • U = A (3)

where L is a lower triangular matrix and U is an upper triangular matrix. For the case of a 3 × 3
matrix, equation (3) has this general form:

 (4)

This means that the set of linear equation we wish to solve for (equation (2)) can be expressed as:

(L • U) • X = L • (U • X) = B

So that we can solve for X by first solving for Y such that

L • Y = B (5)

and then solving

U • X = B (6)

The advantage of breaking up one linear set into two successive ones is that the solution of a triangular
set is quite trivial. Equation (5) can be solved by forward substitution, and equation (6) by back
substitution, no other manipulation is required.

The question that remains is how to calculate the aij and bij coefficients of the LU decomposition so
that they correspond to the aij coefficients of the original matrix (see equation (4)). While the full

• Page 2 •

- Demonstration Of The Ill-Conditioned Nature Of Hilbert Matricies.

1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5

[]

a
11

0 0

a
21

a
22

0
a

31
a

32
a

33
[]• b

11
b

12
b

13

0 b
22

b
23

0 0 b
33

[]= a
11

a
12

a
13

a
21

a
22

a
23

a
31

a
32

a
33

[]

theory can be found in Numerical Recipies, it is worth noting here that the diagonal terms that appear
in the L and U matricies mean that the system is over specified, and that we cannot solve for all the
coefficients in equation (4). It can be shown that we are allowed to assume all the aii terms are equal to
unity, so that the L and U matrices can be expressed in the combined form:

where all the a and b coefficients are straightforward to calculate.

The ill-conditioned nature of the Hilbert matricies is demonstrated by the calculation of Dxn (for a range
of n):

 (7)

where n is the order of the Hilbert matrix being examined and‘xi corresponds to the exact solution as
computed by integer methods.. It has been shown in the lecture notes that the value of the determinant
of a Hilbert matrix becomes closer to zero as n increases, and so we should find that the error in our
calculation also increases with n.

While we have been given the 'integer methods' mentioned above, due to time restrictions I shall not
write a general program to solve for any order of n, but instead only for the required range of n = 2 to
10. This restriction allows me to use values for‘xi in my program which have been calculated by
Mapel, and avoids the need to implement the general integer method solution.

• Page 3 •

- Demonstration Of The Ill-Conditioned Nature Of Hilbert Matricies.

b
11

b
12

b
13

a
21

b
22

b
23

a
31

a
32

b
33

[]

Dx
n
=

å
i=1

n

(x
i
-xi)

2

å
i=1

n

xi
2

Method
The structure of the program which I assembled for this assignment can be broken down into three
main sections:

1 • Definition of matricies

Before any calculation can be attempted, we need to define the matrices we wish to solve. This breaks
down into three steps; given an order, n:

- Define the Hilbert matrix according to equation (1).

- Define the correct solution matrix from data transferred from Mapel.

- Define the unity matrix B.

2 • Decomposition of matrix and solving for X

The routines for this section were taken from Numerical Recipes, and work broadly as defined in the
theory chapter above. The only difference being that this routine uses pivoting to help stabilise the
solution, and so an array is required to keep count of the pivoting moves the program makes.

So, in order to solve the matrix equation my code:

- Calls the decomposition routine LUDCMP, passing the required parameters, and then

- Calls the back/forward substitution routine LUDKSB, transforming the unity matrix B into the
solution matrix X.

3 • Calculation of the deviation from the real solution

This section of the code simply compares the calculated solution to that from the more accurate integer
methods, using equation (7) above. By doing this for the range of n from 2 to 10, we can demonstrate
the effect of ill conditioning in the solution of matrices by LU decomposition.

The full code for the above scheme is included in the appendix at the back of this report.

• Page 4 •

- Demonstration Of The Ill-Conditioned Nature Of Hilbert Matricies.

Results
The results from my program are summarised in table 1 and figure 1 below:

The plot in figure 1 really doesn't do the data justice, and so figure 2 below shows a plot of log10 error
against n.

• Page 5 •

- Demonstration Of The Ill-Conditioned Nature Of Hilbert Matricies.

Table 1: Error against order.

Order (n) Error

2.0 3.1402e-16

3.0 1.5922e-15

4.0 1.5305e-13

5.0 5.9349e-13

6.0 9.1771e-11

7.0 2.7273e-09

8.0 1.3587e-08

9.0 2.6362e-06

10.0 1.5018e-04

Figure 1: Error against order.

0

3e-05

6e-05

9e-05

0.00012

0.00015

0.00018

2 3 4 5 6 7 8 9 10

E
rr

or

Order of Hilbert matrix (n)

Figure 1: Log10 error against order.

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

2 3 4 5 6 7 8 9 10

E
rr

or
 (

Lo
g

to
 th

e
ba

se
 1

0
of

)

Order of Hilbert matrix (n)

The points of figure 2 are the results from my program, and the line is a line of best fit through the data,
such that:

log10 Dxn = 1.4655 n - 18.928

or:

Dxn = 10(1.4655 n - 18.928)

Thus, for a 0.1% error, we need:

n = (log10 0.001 + 18.928)/1.4655

 = 10.87

ie we need an order between n = 10.0 and 11.0 to get a 0.1% error from the LU decomposition.

It should be noted that an order 10 Hilbert matrix corresponds to:

det |H10| ~ 1.0 × 10-58.

• Page 6 •

- Demonstration Of The Ill-Conditioned Nature Of Hilbert Matricies.

Conclusion
While the inability of the LU decomposition method to cope with Hilbert matrices increases in a very
rapid exponential trend, it should be noted that even with det |H| ~ 10-58 the routine still did not
introduce error of the order of 1%.

In other words, while we should find alternative methods to solve characteristically ill-conditioned
matrices (like solving the higher order Hilbert matrices by the integer methods mentioned earlier), the
LU decomposition method will, in general, be very reliable for systems where ill-conditioning is not an
integral characteristic, as well as for systems of a moderate degree of ill-conditioning (Hilbert up to
order ~10). Of course, the particular choice of method depends on the degree of accuracy that is
required from the solution.

If one must apply LU decomposition to very ill-conditioned matricies, it would be possible to use the
iterative form of LU decomposition, where the result is run backwards through the calculation and
compared with the initial equation in order to improve the algorithm's accuracy.

Note:
Wherever I refer to Numerical Recipes, I am referring to:

- Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P. 1994, Numerical Recipes in
FORTRAN, 2nd Ed. (Cambridge University Press), Chapter 2.

• Page 7 •

- Demonstration Of The Ill-Conditioned Nature Of Hilbert Matricies.

Appendix: FORTRAN code implementation of the assignment.

• Page 8 •

- Demonstration Of The Ill-Conditioned Nature Of Hilbert Matricies.

 pr ogr am Hi l ber t
c Comput es t he sol ut i ons t o t he mat r i x equat i on HX=B
wher e H i s t he Hi l ber t
c mat r i x of or der n, and al l el ement s of B ar e uni t y.
An LU decomposi t i on
c met hod i s empl oyed, usi ng r out i nes f r om Numer i cal
Reci pi es.
c
c The i l l - condi t i oned nat ur e of Hi l ber t mat r i c i es i s
demonst r at ed by
c cal cul at i ng t he di f f er ence bet ween t he LUdecomp
r esul t s wi t h t he r esul t s
c known f r om f or mul ae.
c
c Andr ew Jackson, 1996.
 I NTEGER np
 PARAMETER (np=10)
 DOUBLE PRECI SI ON d, Dx, H(np, np) , Sol n(np) , B(np)
 I NTEGER n, I ndex(np)
c Di spl ay pr ogr am header and get a val ue f or n:
 CALL pr ogheader (n)
c Def i ne al l t he r equi r ed mat r i c i es f or t he anal ysi s:
 CALL def i neH(H, n, np)
 CALL def i neSol n(Sol n, n, np)
 CALL out put mat r i x1D(Sol n, n, np)
 CALL def i neuni t y(B, n, np)
c Decompose and sol ve t he HX=B equat i on:
 CALL LUDCMP(H, n, np, I ndex, d)
 CALL LUDKSB(H, n, np, I ndex, B)
 CALL out put mat r i x1D(B, n, np)
c Anal yse er r or :
 CALL er r cal c(n, np, B, Sol n, Dx)
c Gi ve r esul t s:
 WRI TE(* , *) ‘ Er r or bet ween t he met hods = ‘ , Dx
 st op
 end
c
c Cal cul at e er r or bet ween 1D mat r i c i es:
c
 SUBROUTI NE er r cal c(n, np, Est , Tr ue, er r)
 I NTEGER n, np, i
 DOUBLE PRECI SI ON
Est (np) , Tr ue(np) , er r , di f f sum, t r uesum
 di f f sum=0. 0d0
 t r uesum=0. 0d0
 DO i =1, n
 di f f sum=di f f sum+(Est (i) - Tr ue(i)) * * 2
 t r uesum=t r uesum+Tr ue(i) * * 2
 ENDDO
 er r =dsqr t (di f f sum/ t r uesum)
 r et ur n
 end
c
c Def i ne t he sol ut i on mat r i x f or or der n:
c
 SUBROUTI NE def i neSol n(Sol n, n, np)
 I NTEGER n, np
 DOUBLE PRECI SI ON Sol n(np)
c cur r ent l y usi ng r esul t s f r om Mapel unt i l t he f or mul ea
ar e i mpl ement ed
 I F (n. EQ. 1) THEN
 Sol n(1) =1. 0d0
 ENDI F
 I F (n. EQ. 2) THEN
 Sol n(1) =- 2. 0d0
 Sol n(2) =6. 0d0
 ENDI F
 I F (n. EQ. 3) THEN
 Sol n(1) =3. 0d0
 Sol n(2) =- 24. 0d0
 Sol n(3) =30. 0d0
 ENDI F
 I F (n. EQ. 4) THEN
 Sol n(1) =- 4. 0d0
 Sol n(2) =60. 0d0
 Sol n(3) =- 180. 0d0
 Sol n(4) =140. 0d0
 ENDI F
 I F (n. EQ. 5) THEN

 Sol n(1) =5. 0d0
 Sol n(2) =- 120. 0d0
 Sol n(3) =630. 0d0
 Sol n(4) =- 1120. 0d0
 Sol n(5) =630. 0d0
 ENDI F
 I F (n. EQ. 6) THEN
 Sol n(1) =- 6. 0d0
 Sol n(2) =210. 0d0
 Sol n(3) =- 1680. 0d0
 Sol n(4) =5040. 0d0
 Sol n(5) =- 6300. 0d0
 Sol n(6) =- 2772. 0d0
 ENDI F
 I F (n. EQ. 7) THEN
 Sol n(1) =7. 0d0
 Sol n(2) =- 336. 0d0
 Sol n(3) =3780. 0d0
 Sol n(4) =- 16800. 0d0
 Sol n(5) =34650. 0d0
 Sol n(6) =- 33264. 0d0
 Sol n(7) =12012. 0d0
 ENDI F
 I F (n. EQ. 8) THEN
 Sol n(1) =- 8. 0d0
 Sol n(2) =504. 0d0
 Sol n(3) =- 7560. 0d0
 Sol n(4) =46200. 0d0
 Sol n(5) =- 138600. 0d0
 Sol n(6) =216216. 0d0
 Sol n(7) =- 168168. 0d0
 Sol n(8) =51480. 0d0
 ENDI F
 I F (n. EQ. 9) THEN
 Sol n(1) =9. 0d0
 Sol n(2) =- 720. 0d0
 Sol n(3) =13860. 0d0
 Sol n(4) =- 110880. 0d0
 Sol n(5) =450450. 0d0
 Sol n(6) =- 1009008. 0d0
 Sol n(7) =1261260. 0d0
 Sol n(8) =- 823680. 0d0
 Sol n(9) =218790. 0d0
 ENDI F
 I F (n. EQ. 10) THEN
 Sol n(1) =- 10. 0d0
 Sol n(2) =990. 0d0
 Sol n(3) =- 23760. 0d0
 Sol n(4) =240240. 0d0
 Sol n(5) =- 1261260. 0d0
 Sol n(6) =3783780. 0d0
 Sol n(7) =- 6726720. 0d0
 Sol n(8) =7001280. 0d0
 Sol n(9) =- 3939220. 0d0
 Sol n(10) =923780. 0d0
 ENDI F
 r et ur n
 end
c
c Def i ne a 1D uni t y mat r i x:
c
 SUBROUTI NE def i neuni t y(A, n, np)
 I NTEGER n, np, i
 DOUBLE PRECI SI ON A(np)
 DO i =1, n
 A(i) =1. 0d0
 ENDDO
 r et ur n
 end
c
c Def i ne a Hi l ber t mat r i x of or der n:
c
 SUBROUTI NE def i neH(H, n, np)
 I NTEGER n, np, i , j
 DOUBLE PRECI SI ON H(np, np)
c Go t hr ough el ement appl y i ng a(i j) =1/ (i +j - 1) f or mul a:
 DO i =1, n
 DO j =1, n
 H(i , j) =1. 0d0/ (i +j - 1. 0d0)

• Page 9 •

- Demonstration Of The Ill-Conditioned Nature Of Hilbert Matricies.

 ENDDO
 ENDDO
 r et ur n
 end
c
c Out put a 2D mat r i x
c
 SUBROUTI NE out put mat r i x2D(A, n, np)
 I NTEGER n, np, i , j
 I NTEGER* 2 k
 DOUBLE PRECI SI ON A(np, np)
 DO i =1, n
 DO j =1, n
 WRI TE(* , *) A(i , j)
 ENDDO
 WRI TE(* , *) ‘ ‘
 ENDDO
 WRI TE(* , *) ‘ ‘
 WRI TE(* , *) ‘ Pr ess any key. . . ’
 WRI TE(* , *) ‘ ‘
 CALL GET_KEY@(k)
 r et ur n
 end
c
c Out put a 1D mat r i x
c
 SUBROUTI NE out put mat r i x1D(A, n, np)
 I NTEGER n, np, i
 I NTEGER* 2 k
 DOUBLE PRECI SI ON A(np)
 DO i =1, n
 WRI TE(* , *) A(i)
 ENDDO
 WRI TE(* , *) ‘ ‘
 WRI TE(* , *) ‘ Pr ess any key. . . ’
 WRI TE(* , *) ‘ ‘
 CALL GET_KEY@(k)
 r et ur n
 end
c
c Pr esent user wi t h pr ogr am header and ask f or or der of
mat r i x t o sol ve:
c
 SUBROUTI NE pr ogheader (n)
 I NTEGER n
 WRI TE(* , *)
‘ - ’
 WRI TE(* , *) ‘ HX=B mat r i x equat i on sol ver , wher e H
i s a Hi l ber t ’
 WRI TE(* , *) ‘ mat r i x of or der n and B i s uni t y. ’
 WRI TE(* , *)
‘ - ’
 WRI TE(* , *) ‘ ‘
 WRI TE(* , *) ‘ Ent er or der of mat r i x t o sol ve: ‘
 READ(* , *) n
 r et ur n
 end
c
c The f ol l owi ng r out i nes ar e copi ed f r om Numer i cal
Reci pi es. 2nd Ed.
c
 SUBROUTI NE LUDCMP(a, n, np, i ndx, d)
c Gi ven an NxN mat r i x (a) , t hi s r out i ne r epl aces i t by
t he LU decomposi t i on
c of a r owwi se per mut at i on of i t sel f .
c
c I nput : a - t he mat r i x
c n - ` act i ve’ di mensi on of t he
mat r i x, a.
c np - physi cal di mensi on of t he
mat r i x, a.
c
c Out put : a - t he mat r i x i n LU f or m [t wo
mat r i c i es st or ed as one]
c i ndx - an out put vect or used t o r ecor d
t he r ow per mut at i on
c as ef f ect ed by par t i cal
pi vot i ng.
c d - out put as +/ - 1 dependi ng on
whet her t he number of
c r ow i nt er changes was even or
odd, r espect i vel y.

c
c Thi s r out i ne i s used i n combi nat i on wi t h LUBKSB t o
sol ve l i near equat i ons
c or t o i nver t a mat r i x.
c
 I NTEGER n, np, i ndx(n) , NMAX
 DOUBLE PRECI SI ON d, a(np, np) , TI NY
 PARAMETER (NMAX=500, TI NY=1. 0D- 20)
 I NTEGER i , i max, j , k
 DOUBLE PRECI SI ON aamax, dum, sum, vv(NMAX)
c vv st or es t he i mpl i c i t scal i ng of each r ow - l ar gest
coef f of each r ow
c nor mal i sed t o uni t y
 d=1. 0d0
c l oop over r ows t o get i mpl i c i t scal i ng i nf or mat i on
 do i =1, n

 aamax=0. 0d0
 do j =1, n
 i f (dabs(a(i , j)) . gt . aamax) aamax=dabs(a(i , j))
 end do
 i f (aamax. eq. 0. 0d0) pause ‘ LUDCMP: Si ngul ar mat r i x ’

c save t he scal i ng
 vv(i) =1. 0d0/ aamax

 end do
c l oop over col umns - Cr out ’ s met hod
 do j =1, n

 do i =1, j - 1
 sum=a(i , j)
 do k=1, i - 1
 sum=sum- a(i , k) * a(k, j)
 end do
 a(i , j) =sum
 end do

c i ni t i al i se t he sear ch f or t he l ar gest pi vot el ement
 aamax=0. 0d0
 do i =j , n
 sum=a(i , j)
 do k=1, j - 1
 sum=sum- a(i , k) * a(k, j)
 end do
 a(i , j) =sum

c f i gur e of mer i t f or t he pi vot
 dum=vv(i) * dabs(sum)

c i s i t bet t er t han t he best so f ar ?
 i f (dum. ge. aamax) t hen
 i max=i
 aamax=dum
 end i f
 end do

c do we need t o i nt er change r ows?
 i f (j . ne. i max) t hen
 do k=1, n
 dum=a(i max, k)
 a(i max, k) =a(j , k)
 a(j , k) =dum
 end do

c change par i t y of d and i nt er change t he scal e f act or
 d=- d
 vv(i max) =vv(j)
 end i f
 i ndx(j) =i max

c mat r i x i s s i ngul ar i n ef f ect but subst i t ut e f or zer o
 i f (a(j , j) . eq. 0. 0d0) a(j , j) =TI NY

c f i nal l y, di v i de by pi vot el ement
 i f (j . ne. n) t hen
 dum=1. 0d0/ a(j , j)
 do i =j +1, n
 a(i , j) =a(i , j) * dum
 end do
 end i f

c go back f or t he next col umn i n t he r educt i on
 end do
 r et ur n
 end

 SUBROUTI NE LUDKSB(a, n, np, i ndx, b)
c Sol ves t he set of N l i near equat i ons AX=B.
c
c I nput : a - t he LU decomposed mat r i x
c n - ` act i ve’ di mensi on of t he
mat r i x, a.
c np - physi cal di mensi on of t he

• Page 10 •

- Demonstration Of The Ill-Conditioned Nature Of Hilbert Matricies.

mat r i x, a.
c i ndx - t he per mut at i on vecot r as
r et ur ned by LUDCMP.
c b - cont ai ns t he RHS vect or B.
c
c Out put : b - cont ai ns t he r esul t vect or X.
c
 I NTEGER i , i i , j , l l , n, np, i ndx(n)
 DOUBLE PRECI SI ON sum, a(np, np) , b(n)
c when i i i s set t o a +ve val ue i t becomes t he i ndex of
t he f i r st
c nonvani shi ng el ement of b.
 i i =0
c do f or war d subst i t ut i on - unscr ambl e per mut at i on as
we go
 do i =1, n

 l l =i ndx(i)
 sum=b(l l)
 b(l l) =b(i)
 i f (i i . ne. 0) t hen
 do j =i i , i - 1
 sum=sum- a(i , j) * b(j)
 end do
 el se i f (sum. ne. 0. 0d0) t hen

c a non- zer o el ement was encount er ed so have t o do sums
i n l oop above
c f r om now on

 i i =i
 end i f
 b(i) =sum

 end do
c now do back subst i t ut i on
 do i =n, 1, - 1

 sum=b(i)
 do j =i +1, n
 sum=sum- a(i , j) * b(j)
 end do

c st or e a component of t he sol ut i on vect or X
 b(i) =sum/ a(i , i)

 end do
 r et ur n
 end

